Преобразования треугольник-звезда и звезда-треугольник
Во многих схемах можно встретить такие конфигурации компонентов, в которых невозможно выделить последовательные или параллельные цепи. К этим конфигурациям относятся соединения компонентов в виде звезды (Y) и треугольника (Δ):
Очень часто, в ходе анализа электрических цепей, оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически, чаще возникает необходимость преобразования треугольника в звезду. Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. Иными словами, эквивалентные Δ и Y цепи ведут себя одинаково.
Существует несколько уравнений, используемых для преобразования одной цепи в другую:
Δ и Y цепи очень часто встречаются в 3-фазных сетях переменного тока, но там они, как правило, сбалансированы (все резисторы равны по значению) и преобразование одной цепи в другую не требует таких сложных расчетов. Тогда возникает вопрос: где мы сможем использовать эти уравнения?
Использовать их можно в несбалансированных мостовых схемах:
Анализ данной схемы при помощи Метода Токов Ветвей или Метода Контурных Токов довольно сложен. Теорема Миллмана и Теорема Наложения здесь тоже не помощники, так как в схеме имеется только один источник питания. Можно было бы использовать теорему Тевенина или Нортона, выбрав в качестве нагрузки резистор R3, но и здесь у нас вряд ли что-нибудь получится.
Помочь в этой ситуации нам сможет преобразование треугольник — звезда. Итак, давайте выберем конфигурацию резисторов R1, R2 и R3, представляющих собой треугольник (Rab, Rac и Rbc соответственно), и преобразуем ее в звезду:
После преобразования схема примет следующий вид:
В результате преобразования у нас получилась простая последовательно-параллельная цепь. Если мы правильно выполним расчеты, то напряжения между точками А, В и С преобразованной схемы будут аналогичны напряжениям между этими же точками исходной схемы, и мы сможем вернуть их обратно.
Сопротивления резисторов R4 и R5 остаются неизменными: 18 и 12 Ом соответственно. Применив к схеме последовательно-параллельный анализ, мы получим следующие значения:
Теперь, используя значения напряжений из приведенной выше таблицы, нам нужно рассчитать напряжения между точками А, В и С. Для этого мы применим обычную математическую операцию сложения (или вычитания для напряжения между точками В и С):
Переносим эти напряжения в исходную схему (между точками А, В и С):
Напряжение на резисторах R4 и R5 останется таким же, каким оно было в преобразованной схеме.
К данному моменту у нас есть все необходимые данные для определения токов через резисторы (используем для этой цели Закон Ома I = U / R):
Моделирование при помощи программы PSPICE подтвердит наши расчеты:
Преобразования треугольник-звезда и звезда-треугольник
Во многих схемах можно встретить такие конфигурации компонентов, в которых невозможно выделить последовательные или параллельные цепи. К этим конфигурациям относятся соединения компонентов в виде звезды (Y) и треугольника (Δ):
Очень часто, в ходе анализа электрических цепей, оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически, чаще возникает необходимость преобразования треугольника в звезду. Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. Иными словами, эквивалентные Δ и Y цепи ведут себя одинаково.
Существует несколько уравнений, используемых для преобразования одной цепи в другую:
Δ и Y цепи очень часто встречаются в 3-фазных сетях переменного тока, но там они, как правило, сбалансированы (все резисторы равны по значению) и преобразование одной цепи в другую не требует таких сложных расчетов. Тогда возникает вопрос: где мы сможем использовать эти уравнения?
Использовать их можно в несбалансированных мостовых схемах:
Анализ данной схемы при помощи Метода Токов Ветвей или Метода Контурных Токов довольно сложен. Теорема Миллмана и Теорема Наложения здесь тоже не помощники, так как в схеме имеется только один источник питания. Можно было бы использовать теорему Тевенина или Нортона, выбрав в качестве нагрузки резистор R3, но и здесь у нас вряд ли что-нибудь получится.
Помочь в этой ситуации нам сможет преобразование треугольник — звезда. Итак, давайте выберем конфигурацию резисторов R1, R2 и R3, представляющих собой треугольник (Rab, Rac и Rbc соответственно), и преобразуем ее в звезду:
После преобразования схема примет следующий вид:
В результате преобразования у нас получилась простая последовательно-параллельная цепь. Если мы правильно выполним расчеты, то напряжения между точками А, В и С преобразованной схемы будут аналогичны напряжениям между этими же точками исходной схемы, и мы сможем вернуть их обратно.
Сопротивления резисторов R4 и R5 остаются неизменными: 18 и 12 Ом соответственно. Применив к схеме последовательно-параллельный анализ, мы получим следующие значения:
Теперь, используя значения напряжений из приведенной выше таблицы, нам нужно рассчитать напряжения между точками А, В и С. Для этого мы применим обычную математическую операцию сложения (или вычитания для напряжения между точками В и С):
Переносим эти напряжения в исходную схему (между точками А, В и С):
Напряжение на резисторах R4 и R5 останется таким же, каким оно было в преобразованной схеме.
К данному моменту у нас есть все необходимые данные для определения токов через резисторы (используем для этой цели Закон Ома I = U / R):
Моделирование при помощи программы PSPICE подтвердит наши расчеты:
Пусть требуется рассчитать цепь, показанную на рис. 7.1, а.
Рис. 7.1 — Преобразования электрической цепи
Расчет можно осуществить одним из описанных выше методов. Но так как в цепи имеется только один источник питания, наиболее простым было бы использование закона Ома. Однако попытка определения общего сопротивления цепи оказывается безрезультатной, так как здесь мы не находим ни последовательно, ни параллельно соединенных сопротивлений. Решить задачу помогает преобразование треугольника сопротивлений в эквивалентную звезду.
Треугольник и звезда сопротивлений имеют вид, показанный на рис. 7.2.
Рис. 7.2 — Треугольник и звезда сопротивлений
Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. В этом случае говорят, что схемы эквивалентны.
Можно показать, что условием эквивалентности являются следующие уравнения:
а) при преобразовании треугольника в звезду:
б) при преобразовании звузды в треугольник:
Например, сопротивление звезды R1, присоединенное к узлу 1, получается перемножением сопротивлений R12 и R31 треугольника, присоединенных к этому же узлу, и делением полученного произведения на сумму всех сопротивлений треугольника.
При обратном преобразовании сопротивление треугольника R12, лежащее между узлами 1 и 2, равно сумме сопротивлений звезды R1 и R2, присоединенных к этим узлам, плюс их произведение, деленное на сопротивление третьего луча звезды R3.
Пример 1.3. Рассчитать токи в цепи, изображенной на рис. 1.12, а, при следующих числовых значениях ее параметров: Е = 660 В, R1 = 20 Ом, R2 = 30 Ом, R3 = 5 Ом, R4 = 20 Ом, R5 = 50 Ом.
а) Решение преобразованием треугольника в звезду.
Теперь общее сопротивление цепи легко находится:
Ток, протекающий по источнику (одинаковый в заданной и преобразованной схемах), равен:
Токи в паралельных ветвях:
Возвращаемся к исходной схеме (рис. 7.1, а):
Ток в пятой ветви находим из первого закона Кирхгофа: I5 = I1–I3 = 26–28 = –2 A. Знак минус говорит о том, что действительное направление тока I5 противоположно указанному на схеме.
б) Решение преобразованием звезды в треугольник.
Преобразуем звезду, образуемую в схеме на рис. 7.1, а сопротивлениями R1, R5 и R3, в эквивалентный треугольник (рис. 7.1, в).
Определяем сопротивления треугольника:
Теперь рассчитываем преобразованную цепь. Сначала находим эквивалентные сопротивления участков ac и cd:
Затем определяем общее сопротивление и токи:
Возвращаемся к исходной схеме:
Рекомендуем подставить в приведенные формулы числовые значения параметров цепи и сравнить результаты вычислений с полученными в примере 1.3а.