Ширина спектра прямоугольного импульса

Спектр одиночного импульса имеет следующий вид:

Из спектра одиночного импульса ясно, что чем меньше , тем шире спектр. При ® 0 – спектр равномерный; а при = – имеем на спектре одну постоянную составляющую.

Эта связь вытекает непосредственно из общего свойства преобразования Фурье.

Пусть ƒ(t) соответствует спектр F(ω).

Изменим масштаб функции ƒ(t) по оси времени в a раз и рассмотрим спектр функции aƒ(at):

заменим переменные at = z; adt = dz; t = z/a, то есть длительность функции ƒ(t) уменьшится в a раз, во столько же раз возрастет ширина ее спектра.

Вопрос о соотношении между длительностью импульса и шириной его спектра имеет громадное практическое значение. В вычислительной технике необходимы короткие и мощные импульсы и в тоже время требуется, чтобы спектр импульса был как можно уже, так как широкие спектры вызывают трудности при создании аппаратуры.

Эти требования противоречивы.

Возникает вопрос: нельзя ли найти такие сигналы, которые обладали бы ограниченным спектром и одновременно ограниченной длительностью? Формализм преобразования Фурье этого не позволяет, однако для реальных сигналов могут быть введены разумные ограничения, которые позволяют ограничить либо Δt, либо Δƒ, либо и то и другое.

Наиболее удобным в этом смысле, как мы уже говорили ранее, является энергетический критерий. При этом можно представить себе следующие модели сигналов:

1. Сигналы ограничены во времени. Спектр – неограничен теоретически; физически он всегда ограничен и учитывается только та часть спектра, где сосредоточена подавляющая часть энергии сигнала.

2. Сигналы имеют ограниченный спектр, то есть математически это периодические, неограниченные во времени сигналы. Фактически, реальный процесс всегда ограничен во времени, поэтому учитывается только интервал времени, в котором сосредоточена подавляющая часть всей энергии сигнала.

где t0 – часто задается естественно: для симметричного импульса t0 = 0; для одиночного так же t0 = 0 и формула имеет вид:

3. Сигналы, у которых и длительность (Δt) и ширина спектра (Δƒ) ограничены как интервалы, в которых сосредоточена подавляющая часть энергии сигнала. Математический аппарат преобразования Фурье дает в этом случае приближенные разультаты.

Читайте также:  1С несовместимые типы ссылка

При ограничениях по Δt и Δƒ можно поставить следующую задачу – отыскать такую форму сигнала, для которой произведение Δt · Δƒ достигает min.

Такому условию соответствует импульс, имеющий колоколообразную форму, которая описывается кривой Гаусса (кривой нормального распределения).

Произведение Δt · Δƒ может быть уменьшено только до определенного предела:

Δt · Δƒ ≈ const > 0,

где const зависит от выбора определения Δƒ и Δt.

Приведем значения Δt · Δƒ для различных видов сигналов в предположении, что

Δt · Δƒ – max для импульсов с разрывом (экспонента, прямоугольник); меньше для импульсов с разрывом в первой производной (треугольник и косинусоидальный) и наименьшее значение у колоколообразного импульса, у которого функция непрерывна со всеми своими производными. http://peredacha-informacii.ru/

Наиболее плодотворной и близкой к реальной действительности является модель с ограниченным спектром.

Этому способствует тот факт, что спектр мощности реального сигнала достаточно быстро спадает вне интервала частот, на который приходится основная часть мощности.

В инженерной практике принимают (в первом приближении независимо от формы сигнала):

Практически, независимо от формы сигнала содержится > 90% энергии.

1. Если Tимп = 3млсек, то какая требуется полоса частот, чтобы пропустить основную долю энергии?

2. Какова длительность телевизионных импульсов, если FTVmax = 6мггц?

3. Какова min длительность импульсов, проходящих по телефонному каналу?

4. При передаче трансцоидального импульса происходит его искажение. Чаще всего это сглаживание (показано пунктиром). На рис. 10.18. показаны длительность импульса и длительности фронтов (переднего и заднего). Из приведенных соотношений видно, что для сохранения фронтов требуется значительно более широкий спектр, чем для передачи основной энергии импульса.

DSPL-2.0 — свободная библиотека алгоритмов цифровой обработки сигналов

Распространяется под лицензией LGPL v3

Страница проекта на GitHub.

Содержание

Вводные замечания

В данном разделе мы рассмотрим спектр периодической последовательности прямоугольных импульсов, как одного из важнейших сигналов, используемого в практических приложениях.

Спектр периодической последовательности прямоугольных импульсов

Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , длительности секунд следующих с периодом секунд, как это показано на рисунке 1

Читайте также:  Самая первая игра в мире на компьютер

Единица измерения амплитуды сигнала зависит от физического процесса, который описывает сигнал . Это может быть напряжение, или, сила тока, или любая другая физическая величина со своей единицей измерения, которая меняется во времени как . При этом, единицы измерения амплитуд спектра , , будут совпадать с единицами измерения амплитуды исходного сигнала.

Тогда спектр , , данного сигнала может быть представлен как:

Свойства спектра периодической последовательности прямоугольных импульсов

Рассмотрим некоторые свойства огибающей спектра периодической последовательности прямоугольных импульсов.

Таким образом, значение огибающей на нулевой частоте равно амплитуде импульса деленной на скважность. При увеличении скважности (т.е. при уменьшении длительности импульса при фиксированном периоде повторения) значение огибающей на нулевой частоте уменьшается.

Используя скважность импульсов выражение (1) можно переписать в виде:

Нули огибающей спектра последовательности прямоугольных импульсов можно получить из уравнения:

На рисунке 2 показана огибающая спектра периодической последовательности прямоугольных импульсов (пунктирная линия) и частотные соотношения огибающей и дискретного спектра .

Из рисунка 2 можно заметить, что фазовый спектр принимает значения когда огибающая имеет отрицательные значения. Заметим, что и соответствуют одной и той же точке комплексной плоскости равной .

Пример спектра периодической последовательности прямоугольных импульсов

Пусть входной сигнал представляет собой периодическую последовательность прямоугольных импульсов амплитуды , следующих с периодом секунды и различной скважностью . На рисунке 3а показаны временные осциллограммы указанных сигналов, их амплитудные спектры (рисунок 3б), а также непрерывные огибающие спектров (пунктирная линия).

Как можно видеть из рисунка 3, при увеличении скважности сигнала, длительность импульсов уменьшается, огибающая спектра расширяется и уменьшается по амплитуде (пунктирная линия). В результате, в пределах главного лепестка увеличивается количество гармоник спектра .

Спектр смещенной во времени периодической последовательности прямоугольных импульсов

Выше мы подробно изучили спектр периодической последовательности прямоугольных импульсов для случая, когда исходный сигнал являлся симметричным относительно . В результате спектр такого сигнала является вещественным и задается выражением (1). Теперь мы рассмотрим, что произойдет со спектром сигнала если мы сместим сигнал во времени,как это показано на рисунке 4 .

Читайте также:  Как обозначается команда присваивания в pascal

Смещенный сигнал можно представить как сигнал , задержанный на половину длительности импульса . Спектр смещенного сигнала можно представить согласно свойству циклического временного сдвига как:

Таким образом, спектр периодической последовательности прямоугольных импульсов, смещенной относительно нуля, не является чисто вещественной функцией, а приобретает дополнительный фазовый множитель . Амплитудный и фазовый спектры показаны на рисунке 5.

Из рисунка 5 следует, что сдвиг периодического сигнала во времени не изменяет амплитудный спектр сигнала, но добавляет линейную составляющую к фазовому спектру сигнала.

Выводы

В данном разделе мы получили аналитическое выражение для спектра периодической последовательности прямоугольных импульсов.

Мы рассмотрели свойства огибающей спектра периодической последовательности прямоугольных импульсов и привели примеры спектров при различном значении скважности.

Также был рассмотрен спектр при смещении во времени последовательности прямоугольных импульсов и показано, что смещение во времени изменяет фазовый спектр и не влияет на амплитудный спектр сигнала.

Если проанализировать частные случаи, то можно сделать вывод: чем меньше длительность импульса, тем шире его спектр.

Под шириной спектра понимают частотный интервал, в пределах которого модуль спектральной плотности не меньше некоторого наперёд заданного уровня, например, изменяется в пределах отïSïmax до 0,1ïSïmax (рис. 2.11).

Рассмотрим прямоугольный видеоимпульс, полагая при этом, что верхняя граничная частота спектра wв – это частота соответствующая первому нулю спектральной плотности. Нетрудно видеть, что: или .

Обратившись к экспоненциальному видеоимпульсу, можно условно положить, что на верхней граничной частоте модуль спектральной плотности уменьшается в 10 раз по отношению к максимальному значению.

Поскольку эффективная длительность экспоненциального импульса tи = 2,303/a, произведение fвtи = 3,647.

Спектр дельта-импульса, имеющего бесконечно малую длительность, неограниченно протяжён.

Итак, произведение ширины спектра импульса на его длительность есть постоянное число, зависящее только от формы импульса и, как правило, имеющее порядок единицы: . Говорят, что ширина спектра и длительность импульса связаны соотношением неопределенности (термин, заимствованный из квантовой механики).

Это соотношение имеет первостепенное значение для радиотехники. Оно определяет требования к ширине полосы пропускания радиотехнического устройства. Например, чем короче длительность импульса, тем шире должна быть полоса пропускания соответствующего усилителя.

Оцените статью
Добавить комментарий

Adblock
detector