Метод рунге кутта matlab

Доброго времени суток! Сегодня мы поговорим о решении ОДУ (обыкновенных дифференциальных уравнений) в Matlab. Перед тем как мы начнём обсуждать данную тему, советую вам ознакомиться с темой: Численное дифференцирование в Matlab, чтобы лучше понимать теоретическую составляющую решения ОДУ.

Обыкновенные дифференциальные уравнения

С помощью дифференциальных уравнений можно описать разные задачи: движения системы, взаимодействующих материальных точек, химической кинетики и т.д. Различают три типа задач для систем диф. уравнений:

  • Задача Коши
  • Краевая задача
  • Задача на собственные значения

Кратко расскажу о их сути:

Задача Коши предполагает дополнительные условия в виде значения функции в определённой точке.
Краевая задача подразумевает поиск решения на заданном отрезке с краевыми (граничными) условиями в концах интервала или на границе области.
Задача на собственные значения — помимо искомых функций и их производных, в уравнение входят дополнительное несколько неизвестных параметров, которые являются собственными значениями.

Методы решения дифференциальных уравнений

Решение ОДУ в Matlab и не только, в первую очередь, сводится к выбору порядка численного метода решения. Порядок численного метода не связан с порядком дифференциального уравнения. Высокий порядок у численного метода означает его скорость сходимости.

В случае большого интервала, с помощью алгоритмов с низким порядком сжимают интервал с решениями и находят приблизительные корни, а затем уже уточняют корни с помощью методов с высоким порядком.

Решение обыкновенных дифференциальных уравнений в Matlab можно реализовать «своими ручками», прописав алгоритм по разным схемам. Но также в Matlab есть встроенные функции, выполняющие все стандартные задачи.

Метод Рунге-Кутта первого порядка

Методы Рунге-Кутта представляют собой разложения в ряд Тейлора и от количества использованных элементов ряда зависит порядок этого метода. Следовательно, помимо Рунге-Кутта первого порядка, вы сможете увидеть методы других порядков. Иногда их называют другими именами.

Читайте также:  Мессенджер сигнал что это такое

Например, Метод Рунге-Кутта первого порядка, также известен как Метод Эйлера или Метод ломаных. Информацию о его математическом и графическом представлении советую поискать в гугл. Мы же поговорим о том, как Метод Рунге-Кутта первого порядка реализуется в Matlab для решения ОДУ. Например:

Решить и привести график ошибки уравнения y’ = y*x методом Рунге-Кутта первого порядка (Методом Эйлера, Методом ломаных).

Погрешность Метода Рунге-Кутта 1 порядка

" data-medium-file="https://i1.wp.com/codetown.ru/wp-content/uploads/2017/02/Рунге-1-погрешность.png?fit=300%2C236&ssl=1" data-large-file="https://i1.wp.com/codetown.ru/wp-content/uploads/2017/02/Рунге-1-погрешность.png?fit=622%2C489&ssl=1" src="https://i1.wp.com/codetown.ru/wp-content/uploads/2017/02/%D0%A0%D1%83%D0%BD%D0%B3%D0%B5-1-%D0%BF%D0%BE%D0%B3%D1%80%D0%B5%D1%88%D0%BD%D0%BE%D1%81%D1%82%D1%8C.png?resize=622%2C489" alt="Погрешность метода 1 порядка" w />
На данном графике показана зависимость величины ошибки от шага.

Метод Рунге-Кутта второго порядка

Также известен как Метод Эйлера-Коши. Как видите, во второй части уравнения происходит обращения к следующему шагу. Но как тогда быть, если нам ещё не известен следующий шаг? Всё просто. Метод Рунге-Кутта второго порядка — это всё тот же метод первого порядка, однако, на половине шага происходит нахождение «первичного» решения, а затем происходит его уточнение. Это позволяет поднять порядок скорости сходимости до двух.

Решить и привести график ошибки уравнения u’ = u*x методом Рунге-Кутта второго порядка.


По сравнению с Рунге-Куттом первого порядка изначальная ошибка уже гораздо меньше.

Мы не будем говорить о третьем порядке, потому что задачи на третий порядок встречаются редко, но если будет необходимо, пишите в комментариях, выложу.

Метод Рунге-Кутта четвёртого порядка

Метод Рунге-Кутта четвёртого порядка считается самым распространённым. Тем не менее, работает он аналогично второму и третьему порядку.

Решить и привести график ошибки уравнения u’ = u*x методом Рунге-Кутта четвёртого порядка.


Как видите, на последней картинке размерность ошибки на столько мала, что пришлось воспользоваться loglog() для лучшей видимости.

Решение ОДУ в Matlab стандартными средствами

Стоит отметить, что мы с вами разобрали только один самый известный метод решения ОДУ с разными порядками. Однако, методов очень много.

Читайте также:  Если не посмотришь правило сделаешь ошибку

Для решения дифференциальных уравнений и систем в MATLAB предусмотрены следующие функции:

ode45 (f, interval, X0, [options])
ode23 (f, interval, X0, [options])
ode113 (f, interval, X0, [options])
ode15s (f, interval, X0, [options])
ode23s (f, interval, X0, [options])
ode23t (f, interval, X0, [options])
ode23tb (f, interval, X0, [options])

Входными параметрами этих функций являются:

  • f — вектор-функция для вычисления правой части уравнения системы уравнений;
  • interval — массив из двух чисел, определяющий интервал интегрирования дифференциального уравнения или системы;
  • Х0 — вектор начальных условий системы дифференциальных уравнений;
  • options — параметры управления ходом решения дифференциального уравнения или системы.

Все функции возвращают:

  • массив Т — координаты узлов сетки, в которых ищется решение;
  • матрицу X, i-й столбец которой является значением вектор-функции решения в узле Тi.

В функции ode45 реализован метод Рунге-Кутта 4-5 порядка точности, в функции ode23 также реализован метод Рунге-Кутта, но 2-3 порядка, а функция ode113 реализует метод Адамса.

Для решения жёстких систем предназначены функция ode15s, в которой реализован метод Гира, и функция ode23s, реализующая метод Розенброка. Для получения более точного решения жёсткой системы лучше использовать функцию ode15s. Для решения системы с небольшим числом жёсткости можно использовать функцию ode23t, а для грубой оценки подобных систем служит функция ode23tb.

Символьное решение обыкновенных дифференциальных уравнений произвольного порядка осуществляет функция dsolve r = dsolve(‘eq1,eq2,…’, ‘cond1,cond2,…‘, ‘v’)
Пример использования:

На этом мы закончим. Если остались вопросы, задавайте их в комментариях. Также вы можете скачать исходники чтобы лучше понять тему: «Решение ОДУ в Matlab».

Дальнейшее улучшение точности решения ОДУ первого порядка возможно за счет увеличения точности приближенного вычисления интеграла. Воспользовавшись формулой Симпсона, можно получить более точную формулу для решения задачи Коши для ОДУ первого порядка. В формуле Симпсона для приближенного вычисления определенного интеграла используются значения подинтегрального выражения в трех точках. В интеграле их всего две, поэтому введем дополнительную точку в середине отрезка [xi+1 xi]

Читайте также:  Asus rog strix как включить подсветку

тогда можно переписать так:

Полученное выражение является неявным, так как в правой части содержатся еще не определенные значения функции yi+h/2 и yi+1. Чтобы воспользоваться этой формулой, надо использовать некоторое приближение для вычисления этих значений.

При использовании различных методов приближенного вычисления этих величин, получаются выражения для методов Рунге-Кутта различного порядка точности.

Классический метод Рунге-Кутта четвертого порядка описывается следующей системой пяти равенств:

yi+1=yi+(k1+2k2+2k3+k4),

k2=F(xi+,yi+),

k3=F(xi+,yi+),

Строго говоря, существует не один, а группа методов Рунге-Кутта, отличающихся друг от друга порядком, т.е. количеством параметров kj. Рассматриваемый метод четвертого порядка, являющийся одним из наиболее применяемых на практике, обеспечивает достаточно высокую точность и в то же время отличается сравнительной простотой. В большинстве случаев он упоминается в литературе просто как «метод Рунге-Кутта» без указания его порядка.

Алгоритм метода Рунге-Кутта

Задаем значение n, например, 10.

Последовательно для i=1,2,…,nопределяем:

k1=F(xi,yi), k2=F(xi+,yi+), k3=F(xi+,yi+), k4=F(xi+h,yi+ k3h),

yi+1=yi+(k1+2k2+2k3+k4).

Получаем таблицу значений.

Реализация метода в MS Excel

Дано: , начальные условия y(0)=0,1. Найти у от х=2 при n=10.

Рисунок 4. Структурная схема алгоритма метода Эйлера.

Листинг программы MATLAB реализации метода Эйлера:

function [t,x] = eilera_difur(funkc,interval,inital,h)

Листинг программы MATLAB реализации метода Рунге-Кутта 4 порядка:

function [t,x] = Rungekutta4(funkc,interval,inital,h)

Оцените статью
Добавить комментарий

Adblock
detector