Как найти модуль силы формула

На тело могут оказывать действие не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы.

Формула равнодействующей всех сил

Пусть на тело воздействуют в один и тот же момент времени N сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Сила является векторной величиной. Следовательно, силы, действующие на тело, нужно складывать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:

Формула (1) — это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена также как вектор ускорения тела.

Складывают векторы, используя правило треугольника (рис.1)

правило параллелограмма (рис.2).

или многоугольника (рис.3):

Второй закон Ньютона и формула модуля равнодействующей

Основной закон динамики поступательного движения в механике можно считать формулой для нахождения модуля равнодействующей силы, приложенной к телу и вызывающей ускорение этого тела:

$overline=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета тело скорость движения тела.

При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.

Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.

Примеры задач с решением

Задание. К материальной точке приложены силы, направленные под углом $alpha =60<>^circ $ друг к другу (рис.4). Чему равен модуль равнодействующей этих сил, если $F_1=40 $Н; $F_2=20 $Н?

Решение. Силы на рис. 1 сложим, используя правило параллелограмма. Длину равнодействующей силы $overline$ найдем, применяя теорему косинусов:

Вычислим модуль равнодействующей силы:

[F=sqrt<<40>^2+<20>^2+2cdot 40cdot 20<cos (60<>^circ ) >>approx 52,92 left(Н
ight).]

Ответ. $F=52,92$ Н

Задание. Как изменяется модуль равнодействующей силы со временем, если материальная точка массы $m$ перемещается в соответствии с законом: $s=A<cos (omega t)(м) >$, где $s$ — путь пройденный точкой; $A=const;; omega =const?$ Чему равна максимальная величина этой силы?

Решение. По второму закону Ньютона равнодействующая сил, действующих на материальную точку равна:

Следовательно, модуль силы можно найти как:

Ускорение точки будем искать, используя связь между ним и перемещением точки:

Первая производная от $s$ по времени равна:

Подставим полученный в (2.5) результат, в формулу модуля для равнодействующей силы (2.2) запишем как:

Так как косинус может быть меньше или равен единицы, то максимальное значение модуля силы, действующей на точку, составит:

О причинах изменений

Классическая механика разделена на два раздела – кинематику, при помощи уравнений описывающую траекторию движения тел, и динамику, которая разбирается с причинами изменения положения объектов или самих объектов.

Читайте также:  Как вернуть боковую панель в опере

Причиной изменений выступает некоторая сила, которая есть мера действия на тело других тел или силовых полей (например, электромагнитное поле или гравитация). К примеру, сила упругости вызывает деформацию тела, сила тяжести – падение тел на Землю.

Сила – это векторная величина, то есть, ее действие – направленное. Модуль силы в общем случае пропорционален некоему коэффициенту (для деформации пружины – это ее жесткость), а также параметрам действия (масса, заряд).

Сложение сил

В случае, когда на тело действует n сил, говорят о равнодействующей силе, а формула второго закона Ньютона принимает вид:

$mvec a = sumlimits_^n vec F_i$.

Рис. 1. Равнодействующая сил.

Поскольку F – векторная величина, сумма сил называется геометрической (или векторной). Такое сложение выполняется по правилу треугольника или параллелограмма, либо по компонентам. Поясним каждый метод на примере. Для этого запишем формулу равнодействующей силы в общем виде:

$F = sumlimits_^n vec F_i$

А силу $F_i$ представим в виде:

Тогда суммой двух сил будет новый вектор $F_ = (F_ + F_, F_ + F_, F_ + F_)$.

Рис. 2. Покомпонентное сложение векторов.

Абсолютное значение равнодействующей можно рассчитать так:

Теперь дадим строгое определение: равнодействующая сила есть векторная сумма всех сил, оказывающих влияние на тело.

Разберем правила треугольника и параллелограмма. Графически это выглядит так:

Рис. 3. Правило треугольника и параллелограмма.

Внешне они кажутся различными, но когда доходит до вычислений, сводятся к нахождению третьей стороны треугольника (или, что тоже самое, диагонали параллелограмма) по теореме косинусов.

Если сил больше двух, иногда удобней пользоваться правилом многоугольника. По своей сути – это всё тот же треугольник, только повторенный на одном рисунке некоторое количество раз. В случае, если по итогу контур получился замкнутым, общее действие сил равно нулю и тело покоится.

Задачи

  • На ящик, размещенный в центре декартовой прямоугольной системы координат, действуют две силы: $F_1 = (5, 0)$ и $F_2 = (3, 3)$. Рассчитать равнодействующую двумя методами: по правилу треугольника и при помощи покомпонентного сложения векторов.

Решение

Равнодействующей силой будет векторная сумма $F_1$ и $F_2$.

$vec F = vec F_1 + vec F_2 = (5+3, 0+3) = (8, 3)$
Абсолютное значение равнодействующей силы:

Теперь получим тоже значение при помощи правила треугольника. Для этого сначала найдем абсолютные значения $F_1$ и $F_2$, а также угол между ними.

Угол между ними – 45˚, так как первая сила параллельна оси Оx, а вторая делит первую координатную плоскость пополам, то есть является биссектрисой прямоугольного угла.

Теперь, разместив вектора по правилу треугольника, рассчитаем по теореме косинусов равнодействующую:

  • На машину действуют три силы: $F_1 = (-5, 0)$, $F_2 = (-2, 0)$, $F_1 = (7,0)$. Какова их равнодействующая?

Решение

Достаточно сложить иксовые компоненты векторов:

Что мы узнали?

В ходе урока было введено понятие равнодействующей сил и рассмотрены различные методы ее расчета, а также введена запись второго закона Ньютона для общего случая, когда количество сил неограниченно.

Силу, заменяющую собой действие на тело нескольких сил, называют равнодействующей ; равнодействующая сила равна векторной сумме сил, приложенных к данному телу:

F → = F → 1 + F → 2 + . + F → N ,

где F → 1 , F → 2 , . F → N — силы, приложенные к данному телу.

Равнодействующую двух сил удобно находить графически по правилу параллелограмма (рис. 2.14, а ) или треугольника (рис. 2.14, б ).

Читайте также:  Panasonic tx pr42c10 не включается

Для сложения нескольких сил (вычисления равнодействующей) используют следующий алгоритм :

1) вводят систему координат и записывают проекции всех сил на координатные оси:

F 1 x , F 2 x , . F Nx ,

F 1 y , F 2 y , . F Ny ;

2) вычисляют проекции равнодействующей как алгебраическую сумму проекций сил:

F x = F 1 x + F 2 x + . + F Nx ,

F y = F 1 y + F 2 y + . + F Ny ;

3) модуль равнодействующей вычисляют по формуле

F = F x 2 + F y 2 .

Рассмотрим частные случаи равнодействующей.

Силу взаимодействия тела с горизонтальной опорой , по которой может происходить движение тела, рассчитывают как равнодействующую силы трения и силы реакции опоры (рис. 2.15):

F → вз = F → тр + N → ,

ее модуль вычисляется по формуле

F вз = F тр 2 + N 2 ,

где F → тр — сила трения скольжения или покоя; N → — сила реакции опоры.

Частные случаи равнодействующей:

Силу взаимодействия тела с комбинированной опорой (например, креслом автомобиля, самолета и т.п.) рассчитывают как равнодействующую сил давления на вертикальную и горизонтальную части опоры (рис. 2.16):

F → вз = F → гор + F → верт ,

где F → гор — сила давления, действующая на тело со стороны горизонтальной части опоры (численно равная весу тела); F → верт — сила давления, действующая на тело со стороны вертикальной части опоры (численно равная силе инерции).

Частные случаи равнодействующей:

Равнодействующая силы тяжести и силы Архимеда называется подъемной силой (рис. 2.17):

F → под = F → А + m g → ,

ее модуль вычисляется по формуле

F под = F А − m g ,

где F → А — сила Архимеда (выталкивающая сила); m g → — сила тяжести.

Частные случаи равнодействующей:

Если под влиянием нескольких сил тело равномерно движется по окружности, то равнодействующая всех приложенных к телу сил является центростремительной силой (рис. 2.18):

F → ц .с = F → 1 + F → 2 + . + F → N .

где F → 1 , F → 2 , . F → N — силы, приложенные к телу.

Модуль центростремительной силы, направленной по радиусу к центру окружности, может быть вычислен по одной из формул:

F ц .с = m v 2 R , F ц .с = m ω 2 R , F ц .с = m v ω ,

где m — масса тела; v — модуль линейной скорости тела; ω — величина угловой скорости; R — радиус окружности.

Пример 21. По дну водоема, наклоненному под углом 60° к горизонту, начинает скользить тело массой 10 кг, полностью находящееся в воде. Найти модуль равнодействующей всех сил, приложенных к телу, если между телом и дном водоема воды нет, а коэффициент трения составляет 0,15.

Решение. Так как между телом и дном водяная прослойка отсутствует, то сила Архимеда на тело не действует.

Искомой величиной является модуль векторной суммы всех сил, приложенных к телу:

F → = F → тр + m g → + N → ,

где N → — сила нормальной реакции опоры; m g → — сила тяжести; F → тр — сила трения. Указанные силы и система координат изображены на рисунке.

Вычисление модуля результирующей силы F проведем в соответствии с алгоритмом.

1. Определим проекции сил, приложенных к телу, на координатные оси:

проекция силы трения

F тр x = − F тр = − μ N ;

проекция силы тяжести

( m g ) x = m g sin 60 ° = 0,5 3 m g ;

проекция силы реакции опоры

проекция силы трения

проекция силы тяжести

( m g ) y = − m g cos 60 ° = − 0,5 m g ;

проекция силы реакции опоры

где m — масса тела; g — модуль ускорения свободного падения; µ — коэффициент трения.

2. Вычислим проекции равнодействующей на координатные оси, суммируя соответствующие проекции указанных сил:

Читайте также:  Можно войти или зайти

F x = F тр x + ( m g ) x = − μ N + 0,5 3 m g ;

F y = ( m g ) y + N y = − 0,5 m g + N .

Движение по оси Oy отсутствует, т.е. F y = 0, или, в явном виде:

Отсюда следует, что

что позволяет получить формулу для расчета силы трения:

F тр = μ N = 0,5 μ m g .

3. Искомое значение равнодействующей:

F = F x 2 + F y 2 = | F x | = − 0,5 μ m g + 0,5 3 m g = 0,5 m g ( 3 − μ ) .

F = 0,5 ⋅ 10 ⋅ 10 ( 3 − 0,15 ) = 79 Н.

Пример 22. Тело массой 2,5 кг движется горизонтально под действием силы, равной 45 Н и направленной под углом 30° к горизонту. Определить величину силы взаимодействия тела с поверхностью, если коэффициент трения скольжения равен 0,5.

Решение. Силу взаимодействия тела и опоры найдем как равнодействующую силы трения F → тр и силы нормальной реакции опоры N → :

F → вз = F → тр + N → ,

модуль которой определяется формулой

F вз = F тр 2 + N 2 .

Силы, приложенные к телу, показаны на рисунке.

Модуль силы нормальной реакции опоры определяется формулой

N = m g − F sin 30 ° ,

а модуль силы трения скольжения —

где m — масса тела; g — модуль ускорения свободного падения; µ — коэффициент трения; F — модуль силы, вызывающей движение тела.

С учетом выражений для N и F тр формула для расчета искомой силы принимает вид:

F вз = ( μ N ) 2 + N 2 = N μ 2 + 1 = ( m g − F sin 30 ° ) μ 2 + 1 .

F вз = ( 2,5 ⋅ 10 − 45 ⋅ 0,5 ) ( 0,5 ) 2 + 1 ≈ 2,8 Н.

Пример 23. Во сколько раз изменится подъемная сила, если с аэростата сбросить балласт, равный половине его массы? Плотность воздуха считать равной 1,3 кг/м 3 , массу аэростата с балластом — 50 кг. Объем аэростата составляет 50 м 3 .

Решение. Подъемная сила, действующая на аэростат, является равнодействующей силы Архимеда F → А и силы тяжести m g → :

F → под = F → А + m g → ,

модуль которой определяется формулой

где F A = ρ возд gV — модуль силы Архимеда; ρ возд — плотность воздуха; g — модуль ускорения свободного падения; V — объем аэростата; m — масса аэростата (с балластом или без него).

Модуль подъемной силы может быть рассчитан по формулам:

  • для аэростата с балластом

F под 1 = ρ возд g V − m 1 g ,

  • для аэростата без балласта

F под 2 = ρ возд g V − m 2 g ,

где m 1 — масса аэростата с балластом; m 2 — масса аэростата без балласта.

Искомое отношение модулей подъемных сил составляет

F под 2 F под 1 = ρ возд V − m 2 ρ возд V − m 1 = 1,3 ⋅ 50 − 25 1,3 ⋅ 50 − 50 ≈ 2,7 .

Пример 24. Модуль равнодействующей всех сил, действующих на тело, равен 2,5 Н. Определить в градусах угол между векторами скорости и ускорения, если известно, что модуль скорости остается постоянным.

Решение. Скорость тела не изменяется по величине. Следовательно, тело обладает только нормальной составляющей ускорения a → n ≠ 0 . Такой случай реализуется при равномерном движении тела по окружности.

Равнодействующая всех сил, приложенных к телу, является центростремительной силой и показана на рисунке.

Векторы силы, скорости и ускорения имеют следующие направления:

  • центростремительная сила F → ц .с направлена к центру окружности;
  • вектор нормального ускорения a → n направлен так же, как и сила;
  • вектор скорости v → направлен по касательной к траектории движения тела.

Следовательно, искомый угол между векторами скорости и ускорения равен 90°.

Оцените статью
Добавить комментарий

Adblock
detector